1. Accueil
  2. EN
  3. Studying at ULB
  4. Find your course
MEDI-H506

Magnetic Resonance Imaging and Biomedical Nanotechnology

academic year
2019-2020

Course teacher(s)

Gilles BRUYLANTS (Coordinator) and Thierry METENS

ECTS credits

5

Language(s) of instruction

english

Course content

Magnetic resonance imaging

Basis of nuclear magnetic resonance and Bloch equations. MRI Image and contrast formation. Fourier MRI. Relationship between sampling in the Fourier space and features in the final image. Fourier sampling schemes Signal to noise ratio and artefacts in MRI. MRI of coherent and incoherent motions, angiography, diffusion, functionnal MRI, Echo train imaging. Parallel imaging Simultaneous multislice imaging. Practical demonstrations in Erasme Hospital

Objectives (and/or specific learning outcomes)

Introduction to the physical principles of magnetic resonance imaging (MRI)

After the course the student should be able to

1. identify and analyse a MRI Sequence

2. understanding the Fourier signal sampling and the link between Fourier space and Image space

3. To realise a MRI acquisition, taking into account SNR, artefcts, duration and spatial resolution

4. to understand the differences between spin Echo and gradient echo sequences

5. To calculate the expected signal by solving the Bloch equations, including train echo physics chemical shift and diffusion

6. to understand the principles of parallel imaging, simultaneous multislice excitation

Teaching methods and learning activities

Contribution to the teaching profile

This teaching unit contributes to the following competences:

This teaching unit contributes to the following competences:

Understanding the physical basis of image formation in MRI

Being able to use MRI for human, animal or in vitro imaging

Being able to further develop MRI sequences and methods

Understanding biomedical nanotechnologies.

  • Mesurer les grandeurs physiques liées au vivant, tant morphologique que fonctionnel

  • Traiter et analyser des signaux de toute nature, 1D, image, vidéo, en particulier ceux issus des dispositifs médicaux

  • Se représenter les mécanismes biologiques fondamentaux depuis la biochimie de la cellule jusqu’au fonctionnement des principaux systèmes de la physiologie humaine

  • Traduire les contraintes du vivant dans le langage de l’ingénieur, anticiper l’impact d’un développement sur le vivant (choix des matériaux, des procédés, etc.)

  • Gérer, explorer et analyser les données médicales (dossier médical, imagerie, génomique, statistiques)

Evaluation

Method(s) of evaluation

  • Oral examination

oral exam

Mark calculation method (including weighting of intermediary marks)

geometry mean

Programmes