-
Partager cette page
Fluid mechanics II
Titulaire(s) du cours
Thierry MAGIN (Coordonnateur)Crédits ECTS
5
Langue(s) d'enseignement
anglais
Contenu du cours
Generalities
Fundamental equations (continuity, momentum & energy), complementary equations (constitutive equations, equations of state, 2nd principle), particular cases: inviscid flows, barotropic flows, Bernoulli formulas, constant density flows, two-dimensional flows & stream function.
Dimensional analysis and similarity
Experimental testing (geometric, kinematic and dynamic similarity), dimensional analysis (Vaschy-Buckingham theorem), non-dimensional form of the governing equations, non-dimensional parameters.
Two-dimensional incompressible potential flows
potential flows & potential equation, two-dimensional flows: stream function equation, complex potential, elementary flows (uniform flow, source, vortex & doublet flows), force & moment on a solid body, flow around a circular cylinder.
Laminar and turbulent flows
Qualitative aspects, Reynolds' experiment, engineering description of turbulent flows: Reynolds averaged Navier-Stokes equations, average velocity profile in turbulent wall-bounded flows (inner and outer layers), effect of roughness, turbulence modelling: eddy viscosity models, mixing length model
Boundary layers
Laminar boundary layer equations, flat plate boundary layer (self-similarity concept and Blasius solution, characteristic thicknesses), Falkner-Skan solutions, qualitative analysis of the effect of pressure gradient, separation and recirculation bubbles, integral methods, viscous-inviscid interaction, form drag.
Internal flows
Pipe flow: entrance flow, entry length, laminar and turbulent pipe flow, Moody chart, kinetic energy balance - head losses, singular head losses (contraction, expansion, bends and branches), gradual expansion (diffusor), piping networks, obstruction flowmeters (orifice, venturi and nozzle meters).
One-dimensional steady compressible flows
Stagnation properties, governing equations for steady (quasi-)one-dimensional flows, speed of sound and Mach number, isentropic flow in nozzles, adiabatic flow with friction, frictionless flow with heat transfer, shock waves.
Objectifs (et/ou acquis d'apprentissages spécifiques)
General objectives
- Develop critical thinking when modeling a fluid mechanics problem
- Analyze the results of fluid mechanics experiments carried out in the laboratory
Specific objectives
- Apply the rules of dimensional analysis
- Calculate quantities of interest for engineering flows studied in the course:
- Velocity and pressure field in incompressible potential
- Wall friction and characteristic thicknesses of laminar boundary layers
- Pressure losses in pipes comprising straight sections and singularities
- Distributions of speed, Mach number, pressure, temperature and density in (quasi-) one-dimensional compressible flows
Pré-requis et Co-requis
Cours co-requis
Méthodes d'enseignement et activités d'apprentissages
Exposés (36h), Exercices (12h), Laboratoires (12h)
Références, bibliographie et lectures recommandées
-
Y. A. Çengel & J. M. Cimbala. Fluid Mechanics, fundamentals & applications, 2nd edition, Mc Graw Hill, 2010.
Support(s) de cours
- Syllabus
- Université virtuelle
Contribution au profil d'enseignement
-
Maitriser un corpus pluridisciplinaire en sciences et sciences de l'ingénieur en s'appuyant sur la compréhension des principes et lois qui les fondent et sur une approche critique du savoir.
-
Elaborer un raisonnement scientifique structuré en mettant en oeuvre les langages et les outils propres aux sciences et aux sciences de l'ingénieur.
Autres renseignements
Contacts
Thierry Magin
Thierry.Magin@ulb.be
Campus
Solbosch
Evaluation
Méthode(s) d'évaluation
- Examen écrit
- Examen oral
- Autre
- Rapport écrit
Examen écrit
Examen oral
Autre
Rapport écrit
examen oral, examen écrit et rapport de laboratoire
Construction de la note (en ce compris, la pondération des notes partielles)
Examen oral (60%), examen écrit (20%), note de laboratoire (20%)
Langue(s) d'évaluation
- anglais
- français