1. Accueil
  2. FR
  3. Étudier
  4. Offre de formation
  5. UE
INFO-F311

Intelligence artificielle

année académique
2022-2023

Titulaire(s) du cours

Tom LENAERTS (Coordonnateur)

Crédits ECTS

5

Langue(s) d'enseignement

français

Contenu du cours

Ce cours permettra aux étudiants de s'initier aux bases de l'intelligence artificielle. Quatre thèmes seront abordés, 

  • La recherche et la planification ; en abordant des sujets tels que la recherche informée et non informée, la recherche locale, les jeux et la recherche adversarial.
  • Raisonnement probabiliste ; aborder des sujets comme les réseaux bayésiens et les modèles de Markov.
  • La prise de décision en situation d'incertitude ; avec des sujets comme les processus de décision de Markov et l'apprentissage par renforcement.
  • L'apprentissage automatique ; avec des sujets comme les bayes naïves, la régression, les perceptrons et les réseaux neuronaux.

Objectifs (et/ou acquis d'apprentissages spécifiques)

Avec ce cours, les étudiants doivent avoir suffisamment de connaissances et de compétences techniques pour travailler dans des projets liés à l'IA et réussir des cours liés à l'IA dans le programme Master CS de l'ULB et d'autres universités.

 

Pré-requis et Co-requis

Connaissances et compétences pré-requises ou co-requises

Programmation, algorithmique, mathématiques de base.

Cours pré-requis

Méthodes d'enseignement et activités d'apprentissages

Sessions théoriques (24h) et exercices (12h) et quatre projets (60h)

Contribution au profil d'enseignement

 

Références, bibliographie et lectures recommandées

Ce cours utilise le livre AI - a Modern Approachl, 4ème édition mondiale. Il existe une version anglaise et française de ce livre.  Vous pouvez également acquérir une version en ligne via ce lien.

La bibliothèque des sciences et technologies de l'ULB devrait disposer de 4 exemplaires de ce livre.

Support(s) de cours

  • Université virtuelle

Autres renseignements

Informations complémentaires

Tous les informations liées à ce cours sont disponible sur UV.

Contacts

Tom.Lenaerts@ulb.be

Campus

Plaine

Evaluation

Méthode(s) d'évaluation

  • Examen écrit
  • Projet

Examen écrit

Projet

 

Construction de la note (en ce compris, la pondération des notes partielles)

60% sur les 4 projets, 40% sur l'examen écrit.

Langue(s) d'évaluation

  • français
  • (éventuellement anglais, Néerlandais )

Programmes