1. Accueil
  2. FR
  3. Étudier
  4. Offre de formation
  5. UE
BING-F4002

Acquisition et analyse de données

année académique
2025-2026

Titulaire(s) du cours

Thomas VERDEBOUT (Coordonnateur) et Marius GILBERT

Crédits ECTS

5

Langue(s) d'enseignement

français

Contenu du cours

  • Rappels sur la raison d'être des statistiques
  • Introduction aux tests d’hypothèse
  • Analyse en composantes principales (ACP)
  • Classification, groupement
  • Analyse de la variance (ANOVA)
  • Régression linéaire
  • Analyse discriminante
  • Méthodes de machine learning
  • Statistique Spatiale et séries temporelles

Objectifs (et/ou acquis d'apprentissages spécifiques)

A l'issue de cette unité d'enseignement, l'étudiant sera capable de :

  • choisir une méthode statistique adaptée au traitement des données issues d'un dispositif d'observations ou d'expérience
  • adapter et dimensionner un dispositif d'observations ou d'expériences pour répondre à une question biologique
  • de mettre en oeuvre et d'interpréter les méthodes statistiques de base

Pré-requis et Co-requis

Cours ayant celui-ci comme co-requis

Méthodes d'enseignement et activités d'apprentissages

24h de cours magistral ex-cathedra, 20h d’exercices réalisés à l'aide des logiciels R et RStudio en salle informatique

Références, bibliographie et lectures recommandées

  • Crawley MJ (2005). Statistics. An introduction using R. Wiley, Chichester, 327pp
  • Legendre P, Legendre L (1998). Numerical ecology (2° edition). Elsevier, Amsterdam, 853pp

Support(s) de cours

  • Université virtuelle

Contribution au profil d'enseignement

Profil d'enseignement des bioingénieurs :

  • Appliquer des techniques d’analyse, d’échantillonnage et d’identification dans le cadre d’études scientifiques de pointe dans les domaines des sciences et techniques de l’environnement
  • Appliquer des techniques d’analyse, d’échantillonnage et d’identification dans le cadre d’études scientifiques de pointe dans les domaines des sciences agronomiques
  • Appliquer des techniques d’analyse,d’échantillonnage et d’identification (faisant notamment appel aux techniques avancées d’imagerie) dans le cadre d’études scientifiques de pointe dans les domaines de la chimie et des bio-industries
  • Adapter et dimensionner un dispositif d’observation ou d’expérience en fonction des objectifs poursuivis par l’étude
  • Choisir des méthodes d’analyse statistique pertinentes, élaborer des modèles, interpréter les résultats et évaluer leur fiabilité de manière critique
Profil d'enseignement des biologistes :
  • 2.2. Concevoir, planifier, développer et mettre en œuvre un protocole permettant de tester une hypothèse
  • 2.3. Utiliser des outils d’analyse des données y compris statistique pour répondre à une questionscientifique
  • 3.5. Concevoir et mettre en place des approches expérimentales efficientes pour résoudre une question scientifique
Profil d'enseignement du Master en bio-informatique et modélisation
  • 1.4. Maîtriser les approches mathématiques, statistiques et informatiques sur lesquelles se fondent les études bioinformatiques et de modélisation

Autres renseignements

Contacts


Thomas Verdebout (thomas.verdebout@ulb.be)

Campus

Plaine

Evaluation

Méthode(s) d'évaluation

  • Examen écrit
  • Examen oral

Examen écrit

Examen oral

Toutes les instructions sont transmises via l'UV. La note finale est construite à partir d'un travail facultatif et d'un examen écrit.

Construction de la note (en ce compris, la pondération des notes partielles)

Si vous remettez un travail, la note finale est une moyenne pondérée du travail (1/4 de la note) et de l'examen écrit (3/4 de la note). 

Langue(s) d'évaluation

  • français

Programmes