1. Accueil
  2. FR
  3. Étudier
  4. Offre de formation
  5. UE
INFO-H410

Techniques of Artificial Intelligence

année académique
2025-2026

Titulaire(s) du cours

Dimitrios SACHARIDIS (Coordonnateur)

Crédits ECTS

5

Langue(s) d'enseignement

anglais

Contenu du cours

This course provides an introduction to both classical and modern approaches in Artificial Intelligence (AI). While recent breakthroughs in Machine Learning and Deep Learning have brought AI into the spotlight, the field encompasses a much broader range of techniques and ideas. The course covers the following topics:

  • Agent and Search
  • Constraint Satisfaction Problems
  • Adversarial Search and Uncertainty
  • Markov Decision Processes
  • Reinforcement Learning
  • Bayesian Networks
  • Naive Bayes and Decision Trees
  • Neural Networks
  • Large Language Models
  • Responsible AI

Objectifs (et/ou acquis d'apprentissages spécifiques)

The primary goal of the course is to give students a comprehensive overview of AI, covering foundational concepts as well as current trends. In addition to theoretical understanding, students will gain hands-on experience through practical exercises and a software project. 

Pré-requis et Co-requis

Cours ayant celui-ci comme co-requis

Méthodes d'enseignement et activités d'apprentissages

The course consists of a series of lectures and practice sessions.

Références, bibliographie et lectures recommandées

The course is based on the following two textbooks:

  • Artificial Intelligence: A Modern Approach, 4th Edition, 2021. Peter Norvig and Stuart J. Russell. Pearson Education.
  • L'intelligence artificielle en pratique avec Python : recherche, optimisation, apprentissage, 3rd Edition, 2024. Hugues Bersini and Ken Hasselmann. Eyrolles.

Support(s) de cours

  • Université virtuelle

Autres renseignements

Campus

Solbosch

Evaluation

Méthode(s) d'évaluation

  • Examen écrit
  • Projet

Examen écrit

  • Examen à livre ouvert

Projet

The evaluation is based on a programming project and a written exam.

Construction de la note (en ce compris, la pondération des notes partielles)

  • 50% from the programming project
  • 50% from the written exam

Langue(s) d'évaluation

  • anglais

Programmes