-
Partager cette page
Fluid mechanics II
Titulaire(s) du cours
Thierry MAGIN (Coordonnateur)Crédits ECTS
5
Langue(s) d'enseignement
anglais
Contenu du cours
Generalities
Fundamental equations (continuity, momentum & energy), complementary equations (constitutive equations, equations of state, 2nd principle), particular cases: inviscid flows, barotropic flows, Bernoulli formulas, constant density flows, two-dimensional flows & stream function.
Dimensional analysis and similarity
Experimental testing (geometric, kinematic and dynamic similarity), dimensional analysis (Vaschy-Buckingham theorem), non-dimensional form of the governing equations, non-dimensional parameters.
Two-dimensional incompressible potential flows
potential flows & potential equation, two-dimensional flows: stream function equation, complex potential, elementary flows (uniform flow, source, vortex & doublet flows), force & moment on a solid body, flow around a circular cylinder.
Laminar and turbulent flows
Qualitative aspects, Reynolds' experiment, engineering description of turbulent flows: Reynolds averaged Navier-Stokes equations, average velocity profile in turbulent wall-bounded flows (inner and outer layers), effect of roughness, turbulence modelling: eddy viscosity models, mixing length model
Boundary layers
Laminar boundary layer equations, flat plate boundary layer (self-similarity concept and Blasius solution, characteristic thicknesses), Falkner-Skan solutions, qualitative analysis of the effect of pressure gradient, separation and recirculation bubbles, integral methods, viscous-inviscid interaction, form drag.
Internal flows
Pipe flow: entrance flow, entry length, laminar and turbulent pipe flow, Moody chart, kinetic energy balance - head losses, singular head losses (contraction, expansion, bends and branches), gradual expansion (diffusor), piping networks, obstruction flowmeters (orifice, venturi and nozzle meters).
One-dimensional steady compressible flows
Stagnation properties, governing equations for steady (quasi-)one-dimensional flows, speed of sound and Mach number, isentropic flow in nozzles, adiabatic flow with friction, frictionless flow with heat transfer, shock waves.
Objectifs (et/ou acquis d'apprentissages spécifiques)
General objectives
- Develop critical thinking when modeling a fluid mechanics problem
- Analyze the results of fluid mechanics experiments carried out in the laboratory
Specific objectives
- Apply the rules of dimensional analysis
- Calculate quantities of interest for engineering flows studied in the course:
- Velocity and pressure field in incompressible potential
- Wall friction and characteristic thicknesses of laminar boundary layers
- Pressure losses in pipes comprising straight sections and singularities
- Distributions of speed, Mach number, pressure, temperature and density in (quasi-) one-dimensional compressible flows
Pré-requis et Co-requis
Cours co-requis
Méthodes d'enseignement et activités d'apprentissages
Exposés (36h), Exercices (12h), Laboratoires (12h)
Références, bibliographie et lectures recommandées
-
Y. A. Çengel & J. M. Cimbala. Fluid Mechanics, fundamentals & applications, 2nd edition, Mc Graw Hill, 2010.
-
I. L. Ryhming. Dynamique des fluides, Presses Polytechniques Romandes, 1985.
Support(s) de cours
- Syllabus
- Université virtuelle
Contribution au profil d'enseignement
-
Maitriser un corpus pluridisciplinaire en sciences et sciences de l'ingénieur en s'appuyant sur la compréhension des principes et lois qui les fondent et sur une approche critique du savoir.
-
Elaborer un raisonnement scientifique structuré en mettant en oeuvre les langages et les outils propres aux sciences et aux sciences de l'ingénieur.
Autres renseignements
Contacts
Thierry Magin
Thierry.Magin@ulb.be
Campus
Solbosch
Evaluation
Méthode(s) d'évaluation
- Autre
Autre
Examen oral, examen écrit et rapport de laboratoire
Construction de la note (en ce compris, la pondération des notes partielles)
Examen oral (50%), examen écrit (30%), note de laboratoire (20%)
Langue(s) d'évaluation
- anglais
- français