année académique
2024-2025

Titulaire(s) du cours

Andriy Haydys (Coordonnateur)

Crédits ECTS

5

Langue(s) d'enseignement

anglais

Contenu du cours

•    Linear (pseudo)differential operators on manifolds;
•    Sobolev spaces;
•    Elliptic operators, the Laplace-Beltrami operator;
•    Classical (co)homology theories (in particular, de Rham cohomology, singular homology);
•    Hodge theory. 

Objectifs (et/ou acquis d'apprentissages spécifiques)

The central topic of the course is the interplay between geometry, topology, and analysis. It turns out that elliptic differential operators on manifolds capture subtle information about the underlying space. For example, the dimension of the kernel of the Hodge Laplacian depends only on the topology of the underlying manifold. The aim of the course is to provide a glimpse in this exciting area of mathematics.

Pré-requis et Co-requis

Connaissances et compétences pré-requises ou co-requises


MATH-F410  Differential geometry II    

The following courses may be helpful but are not necessarily required:

MATH-F419 Algebraic topology
MATH-F412 Méthodes variationnelles et équations aux dérivées partielles
 

Cours co-requis

Méthodes d'enseignement et activités d'apprentissages

•    Lectures, including remote lecture on Teams if lecturing in person will not be possible.

Références, bibliographie et lectures recommandées

F. Warner. Foundations of differentiable manifolds and Lie groups (Ch 4-6).

Contribution au profil d'enseignement

•    To acquire advanced notions in certain areas of mathematics.
•    Develop an abstraction process for the development of a theory.
•    Write a mathematically rigorous solution or a result in a mathematical theory.
 

Autres renseignements

Informations complémentaires

It is intended to provide written lecture notes. 

Contacts

Andriy Haydys, andriy.haydys@ulb.be

Campus

Plaine

Evaluation

Méthode(s) d'évaluation

  • Examen oral

Examen oral

examen oral

Langue(s) d'évaluation

  • anglais

Programmes